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Gene expression data is a biological
representation of various transcriptions
and other chemicals found inside a cell at

a given time.
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Questions it will answer ?

v" Which genes are active and to what
extent in a particular biological sample?

v' How do genes contribute to various

traits, diseases, and physiological
conditions?

Bhandari, N et al.,

(2022)



Gene expression data types

4 . )
v Microarray data

v RNA-seq data

v" Single cell RNA-seq data
- J

» Each gene expression data type has its advantages and limitations.

» The choice of method depends on the research guestion, the number of genes to be
analyzed, the available sample material, and the desired level of accuracy and throughput.



S.No.

Comparison of Microarray and RNA-Seq technologies

Basis

Technology

Dynamic Range

Probe Design

Data Format

Quantification
Accuracy

Detection of Low-Abundance
Transcripts

Cost and Throughput

Data Analysis Complexity

Experimental Flexibility

v' scRNA-seq offers a high-

resolution view of gene
expression at the single-
cell level, enabling the
study of cellular
heterogeneity and rare
cell populations.

Steps include: Data
preprocessing,

Dimensionality reduction,
Cell clustering, Marker
gene identification, Cell

trajectory analysis,
Functional enrichment
analysis, visualization,

downstream analysis.

RNA-Seq
High-throughput sequencing

Broader

Does not rely on predefined
probes

Raw sequencing reads

Higher accuracy

Detect low-abundance
transcripts more effectively

Higher cost & provides a
comprehensive view of the
transcriptome

Complex analysis

Data can be reanalyzed for
various purposes



Key applications of AI/ML In gene expression data analysis
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Case study: Al application in tumor grade classification
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Introduction

« Endometrial carcinoma represents the fourth most frequent type of malignancy among
women in developed countries.

* The tumor grade serves as an independent marker of survival and may have an impact on
therapy in line.

» Three groups are there:

G1 G2 G3

Suitable for fertility At risk of both under- High-risk patients and
thus get adjuvant

preservation therapy and overtreatment chemotherapy

!

Discordance between preoperative and postoperative
tumor grades is most frequently observed in grade 2



Rationale of the study

To develop a method to separate the G1 and G3 patients and further divide
G2 patients into high-risk and low-risk subgroups based on their global gene
expression profiles



Sample filtering

Clinical data downloaded
from cBioportal (n=549)

Not eligible: (n=139)

* Duplicated data (n=1)

* Non-endometrioid type (n=137)

* Received neoadjuvant therapy (n=1)

Eligible for further
analysis (n=410)

RNA-seq results
¢ downloaded from TCGA
(n=587)
RNA-Seq AND clinical
parameters available

(n=406)

Grade 1 (G1) Grade 2 (G2) Grade 3 (G3)
(n=98) (n=118) (n=192)

Fig. 1. (a) Workflow of the sample filtering and pre-processing.



Pre-processing details

v TCGADbiolink 2.12.6 package, downloaded the level three RNA-sequencing data
altogether totaling 588 samples.

v'The clinical data of the 546 patients of the samples were downloaded from
www.cbioportal.org (accessed on 28 October 2020).

v Of the remaining 406 people, the G2 patients were separated and the G1 and G3
patients were managed together.

v'From the total transcript (60,488), the low read counts were removed, and then with the
left transcripts (24,349) normalized the gene expression matrix of the merged G1 and G3
groups with the help of the varianceStabilizingTransformation() function.

v'Normalized the G2 group the same way based on the parameters received for the
previous group.



R code for pre-processing

(TCGAbiolinks)
(dplyr)
query <- GDC y(project = "TCGA-UCEC",
legacy = FALSE,
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification”,
workflow.type = "HTSeq - Counts")
3DC (query)
data <- :"; - 2(query, summarizedExperiment = FALSE)
;(data file="tcgaBiolinks uterus_rnaseq raw.txt', sep='\t', row.names=FALSE, col.names=

coldata=data. frame(grade=original$Neoplasm.Histologic.Grade, row.names = ¢ mes(rnaseq))
cts=as.matrix(rnaseq)
v("DESeqg2")
("BiocParallel” )
ddsTraln - DESegDats : latrix(countData = cts, colData = coldata, design = ~grade)
keep <- leans ( (ddsTraln)) > 4
ddsTrain <- ddsTraln[keep ]
n(ddsTrain)
ddsTrain <- estimateSizeFactors(ddsTrain)
ddsTrain <- @:'i‘f"ciif:e'f; (ddsTraln)
vst <- varianc ation(ddsTrain, blind = /
array=as.c ( ( (Vst)))
iLL(ro (coldata) nes(assay))
arraySlabel coldataSgrade
>(array, file='uterus_rnaseq VST.txt', sep='\t', row.names= E, col.names=TRUE, quote=




Predicting
on
test set

Simplified
modelling

MY

Model development

Downloading, filtering,
normalizing the data

Train Test

!

Train/test split (80:20)

Model
training

Predicting on G2 samples

v

Validation
(Cox-regression)

Fig. 1. (b) Flowchart of data modelling.

Quter loop:
Monte-Carlo CV

Inner loop:
5-fold CV
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Fig. 2. Principal component analysis of G1 (blue dots) and G3 (red triangles) groups



Receiver operating characteristic

Receiver operating characteristic
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Fig. 3. ROC curves of the cross-validation rounds (a) and the test data (b). The blue line represents the mean
AUC value and the grey area represents the standard deviation. (c) Confusion matrix of the test data.



Grade == low-risk G2 =& high-risk G2
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Fig. 4. Kaplan—Meier curves of relapse-free survival between groups predicted by machine learning
model. Blue: low-risk G2, red: high-risk G2. Cox-Mantel test p-value 0.037.
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Grade == low-risk G2 =& high-risk G2
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MAL FOXB1 UCHL1 CRABP1
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Fig. 6. Kaplan—Meier curves of overall survival between groups with high gene expression and low gene expression of
selected genes.
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v High expression of FOXB1, HABP2,
EDN3, B3GAT1- DT, and DKK4 was
associated with low-risk
phenotype.

v High expression of RPL41P1, MAL,
UCHL1, CRABP1, PEG10, RPS28P7,
and MLF1 was responsible for more
clinically aggressive behavior



Key findings

v RNA-sequencing data from the TCGA project and machine learning to develop a model which
can correctly classify grade 1 and grade 3 samples. They used the trained model on grade 2
patients to subdivide them into low-risk and high-risk groups.

v With iterative retraining, they selected the most relevant 12 transcripts to build a simplified model
without losing accuracy. Both models had a high AUC of 0.93.

Significance
v' The approach overcomes the subjective components of the histological evaluation.

v" The developed method can be automated to perform a prescreening of the samples before a
final decision is made by pathologists.

v Atranslational approach based on machine learning methods could allow for better therapeutic
planning for grade 2 endometrial cancer patients.






